УДК 541.64:537.3:546.185-325

ПРОТОНОПРОВОДЯЩИЕ ГЕЛЕВЫЕ ЭЛЕКТРОЛИТЫ НА ОСНОВЕ ПОЛИМЕТИЛМЕТАКРИЛАТА, ДОПИРОВАННОГО ФОСФОРНОЙ КИСЛОТОЙ В N,N-ДИМЕТИЛФОРМАМИДЕ¹

© 2011 г. Л. Э. Шмуклер*, Л. П. Сафонова*, **, Nguen Van Thuk**, М. С. Груздев*

* Учреждение Российской академии наук

Институт химии растворов РАН 153045 Иваново, ул. Академическая, 1 ** Ивановский государственный химико-технологический университет 153460 Иваново, пр. Ф. Энгельса, 7 Поступила в редакцию 24.12.2009 г. Принята в печать 13.05.2010 г.

Получены стабильные во времени протонопроводящие гелевые электролиты на основе ПММА, допированного растворами *о*-фосфорной кислоты различной концентрации в ДМФА. Изучена зависимость удельной электропроводности гелей от концентрации кислоты и полимера, а также молекулярной массы ПММА при 25–65°С. Исследована термическая стабильность электролитов. Обнаружено, что увеличение содержания полимера в геле изменяет термическое поведение полученных образцов.

ВВЕДЕНИЕ

Протонопроводящие полимерные материалы занимают особое место среди ионных проводников вследствие возможности их использования в разнообразных электрохимических устройствах. Несмотря на значительное количество уже созданных протонных проводников, большинство из них не удовлетворяет комплексу требований, предъявляемых к новым материалам. Наряду с высокой протонной проводимостью они должны обладать также высокой химической и механической стабильностью. В связи с этим актуальными остаются задачи создания новых и модификации свойств известных протонных проводников, а также исследование механизма протонного переноса в таких системах. Гелевые электролиты, характеризующиеся высокой проводимостью, изучаются как перспективный материал для топливных ячеек, сенсоров влажности и т.д.

В литературе достаточно широко представлены работы по синтезу и свойствам протонопроводящих гелевых электролитов на основе ПММА как одного из недорогих полимеров [1–10]. Чаще всего для приготовления гелей использовали растворы кислот в пропиленкарбонате, этиленкарбонате, ДМФА, а также их смеси. Однако получить устойчивые во времени электролиты, обладающие эффективным протонным транспортом в широком температурном интервале, пока не удалось. Важными критериями отбора растворителей являются высокая диэлектрическая константа, низкая вязкость, широкий температурный интервал ИХ применения И возможность протонирования молекул растворителя донором протона. Варьированием состава гелей, т.е. растворителя, концентрации донора протонов и полимера, а также модификацией методики приготовления могут быть получены протонопроводящие гели с различными свойствами.

Цель настоящей работы — исследование проводимости и термической стабильности функциональных гелевых электролитов на основе ПММА, допированного растворами *о*-фосфорной кислоты в ДМФА, в зависимости от концентрации кислоты и полимера в системе, а также ММ полимера. Полученные в работе результаты важны для понимания процесса переноса протона в условиях ограниченной геометрии.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Метилметакрилат (99%, "Aldrich"), ПММА $(M_w = 12 \times 10^4,$ "Aldrich"), пероксид бензоила (70%, "Aldrich"), *о*-фосфорная кислота (85%, х.ч., "Химмед"), ДМФА (99.9%, "Panreac") использовали без предварительной очистки.

Ионную проводимость гелей определяли методом спектроскопии электрохимического импеданса (Solartron 1260А) в интервале частот 0.1 Гц — 160 кГц при амплитуде сигнала 10 мВ. Величину

¹ Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (код проекта 08-03-00288a).

E-mail: les@isc-ras.ru (Шмуклер Людмила Экрамовна).

проводимости находили по высокочастотной отсечке, соответствующей объемной проводимости геля. Измерения выполняли в прямоугольной ячейке емкостью 10 мл, на противоположных боковых поверхностях которой были закреплены платиновые электроды в форме пластин размером 1 см², токоподводами служила платиновая проволока.

ТГА полимера и гелей проводили на анализаторе NETZCH TG 209 F1 в токе аргона 20 мл/мин при нагревании со скоростью 10 град/мин.

ИК-спектры изучаемых систем записывали на спектрометре "VERTEX 80v" в диапазоне 4000–500 см⁻¹ между двумя пластинами KBr.

Для приготовления гелевых электролитов использовали как промышленный полимер со средней молекулярной массой $M_w = 12 \times 10^4$, так и полимер, синтезированный методом радикальной полимеризации метилметакрилата по методике [11]. В качестве инициатора полимеризации применяли пероксид бензоила. Полученный ПММА идентифицировали методом спектроскопии ЯМР ¹Н и ЯМР ¹³С. Его среднюю ММ ($M_w = 33 \times$ × 10⁴) определяли вискозиметрическим методом по методике [12]. Вязкость раствора ПММА в бензоле измеряли на вискозиметре с висячим уровнем типа Уббелоде с автоматическим фиксированием времени истечения жидкости на основе фотоэлектронной схемы. Степень полимеризании ПММА составила ~3300.

Протонопроводящие гелевые электролиты готовили следующим образом: навеску полимера растворяли в растворе *о*-фосфорной кислоты в ДМФА при постоянном перемешивании при температуре 80°С в течение 90 мин. Затем температуру снижали до 60°С и систему выдерживали при данной температуре в течение 90 мин. В результате получили бесцветные, прозрачные, стабильные во времени гели. Состав гелевых электролитов, обозначаемых ниже как *х* ПММА–[*y*H₃PO₄– ДМФА], где *х* – содержание полимера в геле (мас. %), *у* – мольная концентрация фосфорной кислоты в ДМФА, приведен в таблице.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Электропроводность протонопроводящих гелевых электролитов

Годографы импеданса для систем ~9 мас. % ПММА–[у H₃PO₄–ДМФА] с различным содержанием кислоты представлены на рис. 1.

Они соответствуют эквивалентной схеме, состоящей из объемного сопротивления электроли-

Состав протонопроводящих гелевых электролитов

Концентрация полимера в геле, мас. %	Концентрация Н ₃ РО ₄ в ДМФА, моль/л	Концентрация H ₃ PO ₄ в геле, мас. %
$\Pi MMA c M_w = 33 \times 10^4$		
6.98	0.121	1.16
8.80	0.600	5.51
8.80	0.716	7.12
8.81	0.802	8.03
8.97	0.651	5.90
8.99	0.104	0.98
9.00	0.503	4.60
9.08	0.398	3.66
9.17	0.334	3.08
18.18	0.121	1.02
$\Pi MMA c M_w = 12 \times 10^4$		
19.4	0.313	2.57
19.6	0.100	0.83

та (Rel), последовательно соединенного с емкостью двойного слоя (Cdl):

Явно выраженного переноса заряда на границе электрод—электролит не наблюдается, в основном происходит зарядка двойного слоя границы. Небольшое скругление спектра для системы 9 мас. % ПММА–[0.503 М Н₃PO₄–ДМФА], вероятно, обусловлено либо неоднородностями на границе электрод—электролит, либо незначительным вкладом в проводимость неосновных носителей заряда.

Зависимость удельной электропроводности электролитов от концентрации фосфорной кислоты в гелях на основе ПММА с $M_w = 33 \times 10^4$ приведена на рис. 2.

Видно, что зависимость проводимости гелевых электролитов от содержания кислоты имеет экстремальный характер. Аналогичный вид зависимости наблюдался в работе [13] для электролитов на основе ПЭО, модифицированного полиметакрилатом, и растворов фосфорной кислоты в ДМФА. Появление максимума объясняется действием двух противоположно направленных факторов. С одной стороны, с повышением общей концентрации кислоты увеличивается концентрация заряженных частиц и, следовательно, должна возрастать электропроводность. С другой стороны, происходит увеличение вязкости системы, приводящее к снижению подвижности ионов.

Следует отметить, что электропроводность полимерных гелей выше электропроводности рас-

ВЫСОКОМОЛЕКУЛЯРНЫЕ СОЕДИНЕНИЯ Серия А том 53 № 1 2011

Рис. 1. Годографы импеданса для систем ~9 мас. % ПММА–[*y* H₃PO₄–ДМФА] с *y* = 0.503 (*1*), 0.334 (*2*), 0.398 (*3*), 0.600 (*4*) и 0.716 моль/л (*5*). *T* = 25^oC.

Рис. 2. Изотермы электропроводности гелевых электролитов с содержанием ПММА ~9 мас. % в зависимости от концентрации H_3PO_4 в геле. Концентрация H_3PO_4 в растворе ДМФА, используемом при приготовлении соответствующего геля, приведена в таблице. T = 25 (1), 35 (2), 45 (3), 55 (4) и 65°C (5).

Рис. 3. Температурная зависимость проводимости для гелевых электролитов 8.99 мас. % ПММА-[0.1 М H₃PO₄-ДМФА] (*1*) и 18.18 мас. % ПММА-[0.1 М H₃PO₄-ДМФА] (*2*).

творов кислоты в ДМФА, которые использовали при синтезе геля. Так, электропроводность 0.1 М раствора H_3PO_4 в ДМФА равна 1.11 × $\times 10^{-5}$ Ом⁻¹ см⁻¹, а удельная электропроводность геля, синтезированного из такого же раствора, содержащего 8.99 мас. % ПММА, составляет 0.34 × $\times 10^{-3}$ Ом⁻¹ см⁻¹. В работе [14] было сделано предположение, что перенос протонов в разбавленных растворах фосфорной кислоты в ДМФА происходит по ион-миграционному механизму за счет протонированного растворителя. В связи с этим увеличение электропроводности в геле по сравнению с раствором, вероятно, связано с тем, что полимерная матрица может принимать участие в переносе заряда по гротгусовскому механизму, а также способствовать диссоциации кислоты. Аналогичные выводы об участии полимерной матрицы в процессе переноса протона были высказаны авторами работы [10] при изучении проводимости полимерного геля на основе глицидилметакрилата и раствора Н₃РО₄ в ДМФА.

Согласно кинетической теории Эйринга, зависимость электропроводности от температуры можно выразить уравнением

$$\kappa = A \exp\left[-\frac{\Delta G_k^{\#}}{RT}\right] \tag{1}$$

Известно, что при транспортном (ион-миграционном) механизме подвижности ионов значения энергии активации электропроводности и вязкости близки между собой. Нами была измерена вязкость геля 6.98 мас. % ПММА–[0.1 М H_3PO_4 –ДМФА] при 25–65°С и из этих данных рассчитана энергия активации вязкого течения ($\Delta G_{\eta}^{*} = 27.1$ кДж/моль). Величина энергии акти-

= 33×10^4 (*I*) и 12×10^4 (*2*). Содержание полимера 18.2 (*I*) и 20.0 мас. % (*2*). Концентрация H₃PO₄ 0.1 моль/л.

вации электропроводности для геля близкого состава ($\Delta G_k^{\#} = 5.90$ кДж/моль) много меньше $\Delta G_{\eta}^{\#}$. Отсюда следует, что проводимость в геле осуществляется главным образом по гротгусовскому механизму.

На рис. 3 приведена температурная зависимость проводимости гелевых электролитов при различном содержании полимера. Как видно, увеличение концентрации ПММА в геле с 9 до 18 мас. % уменьшает удельную электропроводность к. Это согласуется с результатом, полученным в работе [3], где также наблюдалось снижение проводимости с ростом концентрации полимера до 10 мас. % в геле на основе ПММА и 1 М раствора салициловой кислоты в смеси растворителей этиленкарбонат-пропиленкарбонат. В то же время в работе [2] при исследовании гелевых электролитов на основе ПММА и 1 М раствора ои м-нитробензойной кислот в смеси этиленкарбонат, пропиленкарбонат и ДМФА обнаружено экстремальное изменение удельной электропроводности с повышением концентрации ПММА в области 10-12 мас. %. По мнению авторов, добавление полимера в гель до концентрации ~ 10 мас. % вызывает увеличение плотности носителей заряда и, как следствие, рост проводимости. В области высоких концентраций ПММА вязкость системы повышается, что приводит к существенному снижению структурных флуктуаций полимерных цепочек и уменьшению подвижности свободных носителей заряда.

Температурная зависимость проводимости для гелей близкого состава, полученных из ПММА с разной ММ, представлена на рис. 4. Удельная электропроводность у геля на основе ПММА с

Рис. 5. Термогравиметрические кривые для ПММА. Здесь и на рис. 6 и 7 сплошная кривая отвечает m/m_0 , а штриховая $d(m/m_0)/dt$.

 $M_w = 33 \times 10^4$ в 5 раз выше, чем у электролита, приготовленного из ПММА с $M_w = 12 \times 10^4$. Увеличение электропроводности геля при росте ММ исходного полимера также может свидетельствовать об участии полимерной матрицы в процессе переноса протона.

Сравнение наших экспериментальных данных по электропроводности с литературными для электролитов на основе ПММА, допированного растворами салициловой кислоты в ДМФА, смесях этиленкарбонат—пропиленкарбонат и этиленкарбонат—пропиленкарбонат—ДМФА [3], растворами фосфорной кислоты в пропиленкарбонате [13] и растворами эфиров фосфорной кислоты в смеси пропиленкарбонат—ДМФА [7], показывает, что синтезированные нами гели обладают более высокой электропроводностью при всех изученных составах.

Термическая стабильность протонопроводящих гелевых электролитов на основе ПММА

Термическую стабильность протонопроводящих гелей чаще всего исследуют методом ТГА или с помощью комплексного подхода, сочетающего ТГА, ДСК и ИК-спектроскопию [15–19]. В настоящей работе проведен ТГА гелей на основе ПММА с $M_w = 33 \times 10^4$ при содержании полимера в геле 6.98 и 18.18 мас. %.

Согласно результатам ТГА (рис. 5), исходный полимер имеет две ступени термической деструкции. Деполимеризация полимеров, подобных ПММА, объясняется снижением прочности связей С-С в главной цепи и энергии активации деполимеризации вследствие взаимодействия функциональных боковых групп. Первая ступень, согласно дифференциальной кривой ТГА, соответствует температуре 223.1°С и сопровождается уменьшением массы, равным 12.5% от массы образца. Вторая ступень деструкции полимера начинается при 337.2°С (интегральная кривая) и приводит к окончательной потере массы. Процесс термической деструкции основной цепи полимера приходится на температуру 374.1°С (дифференциальная кривая ТГА). Прекращение изменения массы при ~400°С свидетельствует об окончательной деструкции фрагментов полимеpa.

При анализе термогравиметрической кривой протонопроводящего гелевого электролита с содержанием ПММА 6.98 мас. % было обнаружено, что первая ступень убыли массы, согласно дифференциальной кривой ТГА, приходится на температуру 163.6°С (рис. 6). Это может быть обусловлено удалением несвязанного растворителя из образца. На данной ступени происходит основная потеря массы, которая составляет 92.5%.

Отличие в термическом поведении системы, полученной после удаления растворителя, от исходного ПММА заключается в том, что первона-

Рис. 6. Термогравиметрическая кривая для протонопроводящего гелевого электролита 6.98 мас. % ПММА–[0.1 М H₃PO₄–ДМФА].

Рис. 7. Термогравиметрическая кривая для протонопроводящего гелевого электролита 18.18 мас. % ПММА–[0.1 М H₃PO₄–ДМФА].

чальной деструкции полимера при 223.1°С не наблюдается. Окончательная деструкция образца начинается при 375.1°С (дифференциальная кривая) и заканчивается при ~420°С. Для геля с большим содержанием полимера (18.18 мас. %) термическая деструкция характеризуется тремя ступенями (рис. 7). Как следует из рисунка (дифференциальная кривая), первая сту-

ВЫСОКОМОЛЕКУЛЯРНЫЕ СОЕДИНЕНИЯ Серия А том 53 № 1 2011

Рис. 8. ИК-спектры геля 6.98 мас. % ПММА-[0.1 М Н₃РО₄-ДМФА] (1) и раствора 0.1М Н₃РО₄-ДМФА (2).

пень убыли массы наблюдается при 128.1°С и связана также с удалением несвязанного растворителя из образца. Вторая ступень деструкции происходит при 295.1°C, что на 70°C превышает температуру первой ступени деструкции исходного полимера. Увеличение концентрации полимера приводит, с одной стороны, к восстановлению первой ступени деструкции полимера вследствие усиления взаимодействия между боковыми группами цепи; с другой стороны, появление специфических межмолекулярных взаимодействий между молекулами электролита и полимера определяет повышение характерной для ПММА температуры первой ступени разложения. Третья ступень, соответствующая полному распаду полимера, приходится на температуру 375.5°С.

Таким образом, увеличение содержания полимера в геле изменяет термическое поведение полученных образцов.

Исследование структуры гелевых электролитов методом ИК-спектроскопии

На рис. 8 представлены ИК-спектры бинарной смеси 0.1 М H_3PO_4 –ДМФА и полимерного геля, полученного из данной смеси при содержании ПММА 6.98 мас. % ($M_w = 33 \times 10^4$). Видно, что полосы характеристических колебаний карбонильных групп, лежащие в области 1550–1800 см⁻¹, являются асимметричными как для полимера, так и для ДМФА. Поскольку в этих системах спе-

цифические межмолекулярные взаимодействия (водородная связь) могут быть как между кислотой и растворителем, так и между кислотой и полимерной матрицей, мы разложили соответствующие фрагменты спектров на гауссовы составляющие (рис. 9).

Суммарные пики v(C=O) для ДМФА в бинарном растворителе и карбонильной группы полимера в геле раскладываются на два вклада, а для ДМФА в геле — на три. Во всех приведенных спектрах наблюдаются низкочастотные полосы, обусловленные образованием водородных связей с кислотой. Сдвиг этих полос относительно характеристической частоты колебаний С=O, не участвующей в образовании H-связи, для ДМФА составляет 23 см⁻¹ в растворе (рис. 9*a*) и 33 см⁻¹ в геле (рис. 9*b*), а для полимера в геле — 15 см⁻¹ (рис. 9*b*).

Кроме того, можно отметить, что полоса v(C=O) молекулы ДМФА в геле (рис. 96) смещена в низкочастотную область на 35 см⁻¹ по сравнению с ее положением в растворе с фосфорной кислотой (рис. 9*a*). Подобный результат был получен в работе [4] при изучении гелей на основе ПММА, допированного растворами салициловой или бензойной кислот в смеси этиленкарбоната, пропиленкарбоната и ДМФА, а также в работе [10] для гелей на основе глицидилметакрилата, допированного раствором фосфорной кислоты в ДМФА.

Рис. 9. Характеристическая частота C=O колебаний ДМФА в растворе 0.1 М H_3PO_4 –ДМФА (а), ДМФА в геле 6.98 мас. % ПММА–[0.1 М H_3PO_4 –ДМФА] (б) и ПММА в геле 6.98 мас. % ПММА–[0.1 М H_3PO_4 –ДМФА] (б).

Таким образом, в настоящей работе получены протонопроводящие гелевые электролиты с более высокой электропроводностью, чем у представленных в литературе гелей на основе ПММА, допированного другими кислотами и фосфорной кислотой в других растворителях.

СПИСОК ЛИТЕРАТУРЫ

- 1. Svanberg C., Pyckhout-Hintzen W., Borjesson L. // Electrochim. Acta. 2006. V. 51. № 20. P. 4153.
- 2. Sekhon S.S., Arora N., Chandra S. // Eur. Polym. J. 2003. V. 39. № 5. P. 915.
- 3. *Sekhon S.S., Arora N., Singh H.P.* // Solid State Ionics. 2003. V. 160. № 3–4. P. 301.
- Ericson H., Svanberg C., Brodin A., Grillone A.M., Panero S., Scrosati B., Jacobsson P. // Electrochim. Acta. 2000. V. 45. № 8–9. P. 1409.
- Chandra S., Sekhon S.S., Srivastava R., Arora N. // Solid State Ionics. 2002. V. 154–155. P. 609.
- 6. Othman L., Chew K.W., Osman Z. // Ionics. 2007. V. 13. № 5. P. 337.
- Zukowska G., Wieczorek W., Kedzierski M., Florjanczyk Z. // Solid State Ionics. 2001. V. 144. № 1– 2. P. 163.
- Choi Nam-Soon, Park Jung-Ki // Electrochim. Acta. 2001. V. 46. № 10–11. P. 1453.
- 9. *Рыжов В.А., Берштейн В.А. //* Физика твердого тела. 2008. Т. 50. № 10. С. 1901.

- 10. *Raducha D., Wieczorek W., Florjanczyk Z., Stevens J.R.* // J. Phys. Chem. 1996. V. 100. № 51. P. 20126.
- 11. Серенсон У., Кемпбел Т. Препаративные методы химии полимеров. М.: Изд-во иностр. лит., 1963.
- Аввакумова Н.И., Бударина Л.А., Дивгун С.М., Заикин А.Е., Кузнецов Е.В., Куренков В.Ф. Практикум по химии и физике полимеров: Учеб. изд. / Под ред. В.Ф. Куренкова. М.: Химия, 1990.
- Qiao J., Yoshimoto N., Ishikawa M., Morita M. // Solid State Ionics. 2003. V. 156. № 3–4. P. 415.
- Химия растворов и технология жидкофазных материалов. Достижения и перспективы. Сб. науч. тр. / Под ред. А.Г. Захарова. Иваново: Институт химии растворов РАН, 2006.
- Zukowska G., Rogowska M., Weczkowska E., Wieczorek W. // Solid State Ionics. 1999. V. 119. № 1– 4. P. 289.
- Zukowska G., Rogowska M., Wojda A., Zygadlo-Monikowska E., Florjanczyk Z., Wieczorek W. // Solid State Ionics. 2000. V. 136–137. P. 1205.
- 17. Tadanaga K., Yoshida H., Matsuda A., Minami T., Tatsumisago M. // Chem. Mater. 2003. V. 15. № 9. P. 1910.
- Kawahara M., Morita J., Rikukawa M., Sanui K., Ogata N. // Electrochim. Acta. 2000. V. 45. № 8–9. P. 1395.
- Tsuruhara K., Rikukawa M., Sanui K., Ogata N., Nagasaki Y., Kato M. // Electrochim. Acta. 2000. V. 45. № 8–9. P. 1391.